0
0
0
s2smodern

The history of the technology of moving electricity far from where it was generated dates from the late 19th century. This includes movement of electricity in bulk (formally referred to as "transmission"), and the delivery of electricity ("distribution") to individual customers. The distinction between the two terms did not exist in early years and were used interchangeably.

Electric power distribution only became necessary in the 1880s when electricity started being generated at power stations. Before that electricity was usually generated where it was used. The first power distribution systems installed in European and US cites were used to supply lighting: arc lighting running on very high voltage (usually higher than 3000 volt) alternating current (AC) or direct current (DC), and incandescent lighting running on low voltage (100 volt) direct current. Both were supplanting gas lighting systems, with arc lighting taking over large area/street lighting, and incandescent lighting replacing gas for business and residential lighting.

Due to the high voltages used in arc lighting, a single generating station could supply a long string of lights, up to 7-mile (11 km) long circuits,[2] since the capacity of a wire is proportional to the square of the current travelling on it, each doubling of the voltage would allow the same size cable to transmit the same amount of power four times the distance for a given power loss. Direct current indoor incandescent lighting systems (for example the first Edison Pearl Street Station installed in 1882), had difficulty supplying customers more than a mile away due to the low 110 volt system being used throughout the system, from the generators to the final use. The Edison DC system needed thick copper conductor cables, and the generating plants needed to be within about 1.5 miles (2.4 km) of the farthest customer to avoid excessively large and expensive conductors.

About Power Distribution

Electric power begins at a generating station, where the potential difference can be as high as 13,800 volts. AC is usually used. Users of large amounts of DC power such as some railway electrification systems, telephone exchanges and industrial processes such as aluminium smelting usually either operate their own or have adjacent dedicated generating equipment, or use rectifiers to derive DC from the public AC supply. However, High-voltage DC can be advantageous for isolating alternating-current systems or controlling the quantity of electricity transmitted.

From the generating station it goes to the generating station’s switchyard where a step-up transformer increases the voltage to a level suitable for transmission, from 44kV to 765kV. Once in the transmission system, electricity from each generating station is combined with electricity produced elsewhere. Electricity is consumed as soon as it is produced. It is transmitted at a very high speed, close to the speed of light.

What personnel are in demand who should contact us?

There are a wide variety of building services related jobs across a range of disciplines. Typically the following personnel can transfer with ease with a little assistance:

Project Managers, Project Engineers, High and low voltage Electrical engineers and designers, Mechanical engineers and designers, Structural engineers and designers, Instrumentation engineers and designers, Safety personnel, Technical Safety engineers, field and maintenance engineers, operators, planning engineers, document controllers, admin personnel.

There is also a demand for those with Technical Safety experience, government relations and  project management.

In some instances no training will be required prior to placement, we are able to assist where required. We will put you in touch with employers happy to engage you with your current skills and qualifications.

We will help you re-engineer yourself into this evolving high prospects industry.

0
0
0
s2smodern